

6678 TRIODE-PENTODE

For Mobile Communications Equipment

MEDIUM-MU TRIODE 9-PIN MINIATURE

SHARP-CUTOFF PENTODE **HEATER-CYCLING RATING**

PROTOTYPE-6U8

DESCRIPTION AND RATING=

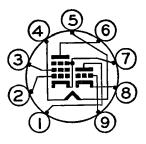
The 6678 is a miniature tube containing a medium-mu triode and a sharp-cutoff pentode. It is especially suited for use as a combined oscillator and mixer at very high frequencies. The electrical characteristics are essentially equivalent to those of the 6U8.

Intended specifically for use in mobile communications equipment, the 6678 may be operated without serious degradation under normal variations in supply voltage as encountered with automotive electrical systems. Also consistent with the requirements of this equipment, the tube is capable of withstanding appreciable on-off cycling.

GENERAL

ELECTRICAL

Cathode—Coated Unipotential			
Heater Voltage, AC or DC		6.3*	Volts
Heater Current		0.45	Amperes
Direct Interelectrode Capacitances	With Shield†	Without SI	hield
Pentode Section			
Grid-Number 1 to Plate, maximum	0.006	0.01	$\mu \mu f$
Input	5.0	5.0	$\mu\mu$ f
Output	3.5	2.6	$\mu\mu f$
Triode Section			
Grid to Plate	1.8	1.8	$\mu\mu$ f
Input	2.5	2.5	$\mu\mu$ f
Output	1.0	0.4	$\mu\mu f$
Heater to Cathode, Each Section	3.0‡	3.0	$\mu\mu$ f


- * When operated from automotive electrical systems, the heater may be subjected to voltage variations as great as ± 20 percent. Although such extremes in heater voltage may be tolerated for short periods, increased equipment reliability can be achieved with improved supply-voltage regulation.
- † With external shield (RETMA 315) connected to cathode of section under test unless otherwise indicated.
- ‡ With external shield (RETMA 315) connected to ground.

MECHANICAL

Mounting Position—Any Envelope—T-6½, Glass Base-E9-1, Small Button 9-Pin

BASING DIAGRAM

RETMA 9AE

TERMINAL CONNECTIONS

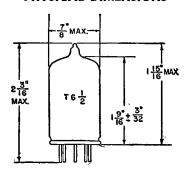
Pin 1-Triode Plate

Pin 2-Pentode, Grid Number

Pin 3-Pentode, Grid Number 2 (Screen)

Pin 4-Heater

Pin 5-Heater


Pin 6-Pentode Plate

Pin 7-Cathode, Grid Number 3, and Internal Shield

Pin 8-Triode Cathode

Pin 9-Triode Grid

PHYSICAL DIMENSIONS

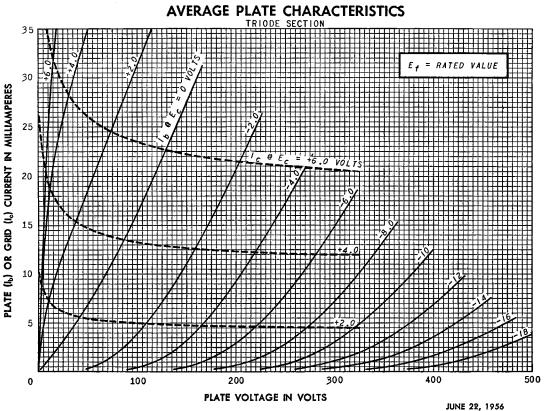
RETMA 6-2

MAXIMUM RATINGS

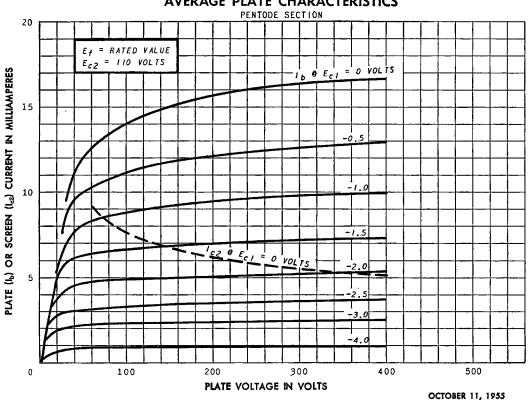
DESIGN-MAXIMUM \	VALUES §
------------------	-----------------

	Pentode Section	Triode Section	
Plate Voltage	330	330	Volts
Screen-Supply Voltage	. 330		Volts
Screen Voltage—See Screen Rating Chart on Page 6.			
Positive DC Grid-Number 1 Voltage	0	0	Volts
Plate Dissipation		3.0	Watts
Screen Dissipation	0.55		Watts
Heater-Cathode Voltage			
Heater Positive with Respect to Cathode			
DC Component	100	100	Volts
Total DC and Peak	200	200	Volts
Heater Negative with Respect to Cathode			
Total DC and Peak	200	200	Volts

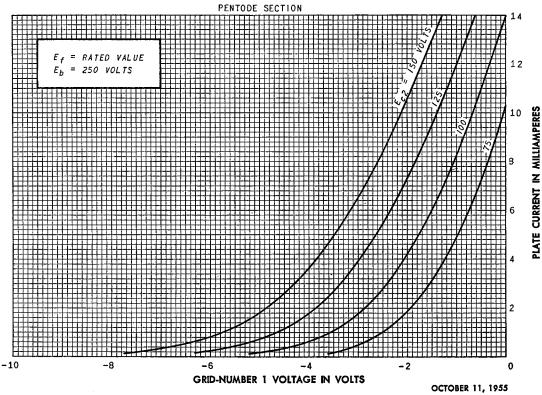
§ Design-Maximum Ratings are the limiting values expressed with respect to bogie tubes at which satisfactory tube life can be expected to occur for the types of service for which the tube is rated. Therefore, the equipment designer must establish the circuit design so that initially and throughout equipment life no design-maximum value is exceeded with a bogie tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, and environmental conditions.

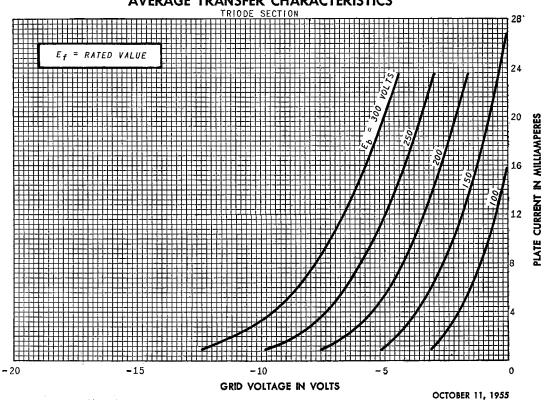

CHARACTERISTICS AND TYPICAL OPERATION

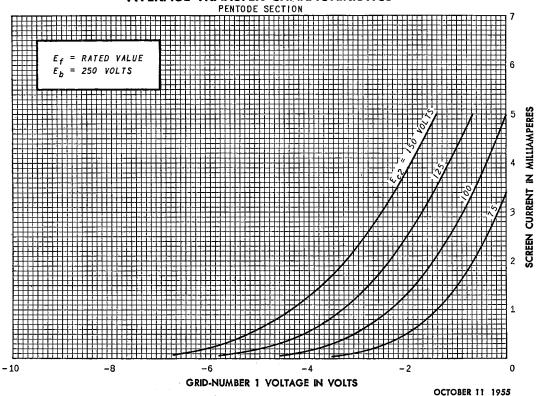
CI	٨	CC	Αı	ΛI	M	ÐΙ	IF	IED
-CL	м	.33	A1	A	٧I	ITL	ıг	IER

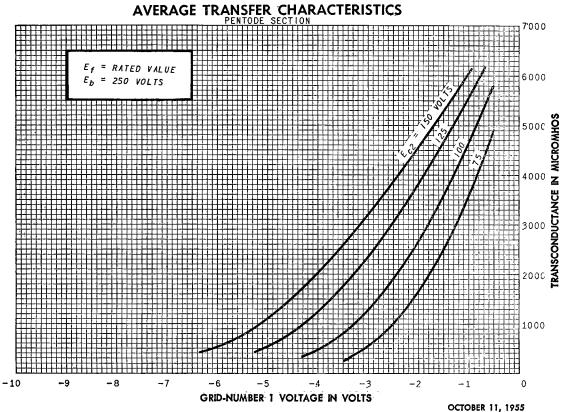

	Pentode Section	Triode Section	
Plate Voltage	250	150	Volts
Screen Voltage	110		Volts
Cathode-Bias Resistor	68	56	Ohms
Amplification Factor		40	
Plate Resistance, approximate	400,000	5 000	Ohms
Transconductance	5200	8500	Micromhos
Plate Current	10	18	Milliamperes
Screen Current	3.5		Milliamperes
Grid-Number 1 Voltage, approximate			-
I _b = 10 Microamperes	10	-12	Volts

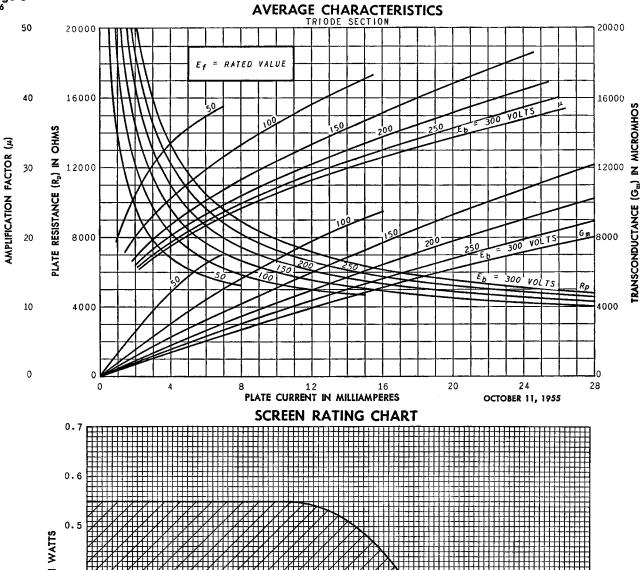
SPECIAL TESTS AND RATINGS

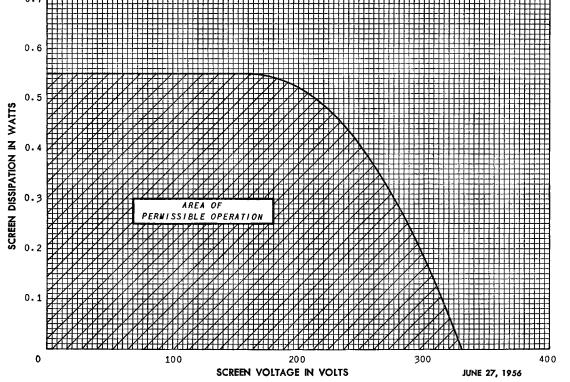

Heater Cycling Rating	
Cycles of Intermittent Operation, minimum	Cycles
Ef = 7.5 volts cycled for one minute on and one minute off. Eb = $Ec2 = Ecl = 0$ volts.	
Ehk $= 135$ volts with heater positive with respect to cathode.	
Average Transconductance at Reduced Heater Voltage, Pentode Section	
Ef = 5.0 volts, Eb = 250 volts, Ec2 = 110 volts, Rk = 68 ohms (bypassed)	Micromhos
Average Transconductance at Reduced Heater Voltage, Triode Section	
Ef = 5.0 volts, Eb = 150 volts, Rk = 56 ohms (bypassed)	Micromhos


AVERAGE PLATE CHARACTERISTICS


AVERAGE TRANSFER CHARACTERISTICS


AVERAGE TRANSFER CHARACTERISTICS


AVERAGE TRANSFER CHARACTERISTICS



6678 ET-T1331 Page 6 6-56

