## EVB2130

## SSI2130 EVALUATION BOARD USER CUIDE

## Support Products

The SSI2130 offers unprecedented performance and features, but its ultra-compact QFN package can present prototyping challenges. The EVB2130 eases evaluation by providing a PCB that allows comprehensive exploration of capabilities. Two versions are available: the EVB2130-B blank board with only a SSI2130 attached, and the EVB2130-P which is fully populated and ready for the bench. With exception of the SSI2130, all components are through-hole for easy construction and experimentation.
A on-board +5 V regulator and 2.5 V reference simplify external power connections, and pots are provided for mixer control, PWM, and VCO setup. Switches ease selection of saw ramp direction plus Through-Zero and Pulse Modulation.
The schematic, bill of materials, and a user guide follow; refer to the SSI2130 data sheet for detailed information on use of the IC.


EVB2130R6-B

## SPECIFICATIONS

■ PCB size: $108 \times 82 \mathrm{~mm}$
■ External Power: $\pm 12 \mathrm{~V}$
■ Inputs: Expo Freq 1V/Oct
PWM In
Aux 1 and 2 In
FM In
PM In
Hard Sync
Soft Sync
■ Outputs: Sine
Saw
Triangle
Pulse
Square
Mix Out


## BILL OF MATERIALS

| Type | Reference | Value | Digikey P/N | Note |
| :---: | :---: | :---: | :---: | :---: |
| Resistors | R1 | 5k | 490-2926-ND | Bourns Trim Pot PV36Y |
|  | R2 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R3 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R4 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R5 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R6 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R7 | 5k | 3306F-502-ND | Bourns Trim Pot 3306 |
|  | R8 | 5k | 490-2926-ND | Bourns Trim Pot PV36Y |
|  | R9 | 5k | 490-2926-ND | Bourns Trim Pot PV36Y |
|  | R10 | 10k | 10.0KXBK-ND |  |
|  | R11 | 100k | 100KXBK-ND |  |
|  | R12 | 100 | 100XBK-ND |  |
|  | R13 | 100 | 100XBK-ND |  |
|  | R14 | 4.02k | 4.02KXBK-ND |  |
|  | R15 | 19.6k | 19.6KXBK-ND |  |
|  | R16 | 267 | 267XBK-ND |  |
|  | R17 | 49.9k | 49.9KXBK-ND |  |
|  | R18 | 10k | 10.0KXBK-ND |  |
|  | R19 | 100k | 100KXBK-ND |  |
|  | R20 | 100k | 100KXBK-ND |  |
|  | R21 | 100k | 100KXBK-ND |  |
|  | R22 | 100k | 100KXBK-ND |  |
|  | R23 | 100k | 100KXBK-ND |  |
|  | R24 | 20k | 20.0KXBK-ND |  |
|  | R25 | 20k | 20.0KXBK-ND |  |
|  | R26 | 4.75k | 4.75KXBK-ND |  |
|  | R27 | 4.75k | 4.75KXBK-ND |  |
|  | R28 | 267 | 267XBK-ND |  |
|  | R29 | 12.7k | 12.7KXBK-ND |  |
|  | R30 | 4.02k | 4.02KXBK-ND |  |
|  | R31 | 10k | 10.0KXBK-ND |  |
|  | R32 | 22.1k | 22.1KXBK-ND |  |
|  | R33 | 267k | 267KXBK-ND |  |
|  | R34 | 20k | 20.0KXBK-ND |  |
|  | R35 | 20k | 20.0KXBK-ND |  |
|  | R36 | 20k | 20.0KXBK-ND |  |
|  | R37 | 20k | 20.0KXBK-ND |  |
|  | R38 | 20k | 20.0KXBK-ND |  |
|  | R39 | 20k | 20.0KXBK-ND |  |
|  | R40 | 499k | 499KXBK-ND |  |
|  | R41 | 10k | 10.0KXBK-ND |  |
|  | R42 | 100 | 100XBK-ND |  |
|  | R43 | 100k | 100KXBK-ND |  |

EVB2130 EVALUATION BOARD FOR SSI2130

| Type | Reference | Value | Digikey P/N | Note |
| :---: | :---: | :---: | :---: | :---: |
| Capacitors | C1 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C2 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C3 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C4 | $1 \mu \mathrm{~F}$ | 445-173257-1-ND |  |
|  | C5 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C6 | 100pF | BC5129-ND |  |
|  | C7 | 10nF | BC5134-ND |  |
|  | C8 | 3.9nF | 490-9019-1-ND | TCAP |
|  | C9 | 10ヶF | 399-6598-ND | Electrolytic |
|  | C10 | 10nF | BC5134-ND |  |
|  | C11 | 10nF | BC5134-ND |  |
|  | C12 |  | BC3324-ND |  |
|  | C13 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C14 | 100pF | BC5129-ND |  |
|  | C15 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C16 | $0.1 \mu \mathrm{~F}$ | BC3324-ND |  |
|  | C17 | 100pF | BC5129-ND |  |
| Switches | S1 |  | 360-2702-ND | NKK A22AH (DPDT) |
|  | S2 |  | 360-2975-ND | NKK A12AH (SPDT) |
| Connectors | CONN1 |  | CP1-3533N-ND | 1/8" Audio Jack |
|  | CONN2 | -12V |  | Newark - Multicomp 80P3614 (blue) |
|  | CONN3 | 0 V |  | Newark - Multicomp 80P3613 (black) |
|  | CONN4 | +12V |  | Newark - Multicomp 80P3616 (red) |
|  | CONN23 |  | 609-3212-ND | $2 \times 5$ Header |
|  |  |  | S9337-ND | Shunts for $2 \times 5$ Header |
|  | CONN34 -CONN39 |  | ED90074-ND | Mill-Max Pin Recepticle (optional) |
|  | J1 |  | 2057-PH1-12-UA-ND | $1 \times 8$ Header |
|  | J2 |  | 2057-PH1-08-UA-ND | $1 \times 12$ Header |
|  |  |  | 3M541-ND6 | 8L DIP Socket (optional) |
| Transistor | Q1 |  | 2N7000TACT-ND |  |
| IC's | U1 |  | SSI2130 |  |
|  | U2 |  | LM311NNS/NOPB-ND | LM311N |
|  | U3 |  | 296-14997-5-ND | TL072IP |
|  | U4 |  | 497-15783-1-ND | L78L05ABZ-AP |
|  | U5 |  | TL431ACLPRAGOSCT-ND | TL432ACLPRA |
| Misc. | EVB2130R5 |  |  | PCB |
|  | Standoffs |  |  | 1" Nylon, Threaded (optional) |
|  | Screws |  |  | 6/32" - 40 (4) (optional) |

## USER NOTES

## INTRODUCTION

Welcome to the SSI2130 Evaluation Board User Guide! This short document will get you started with this evaluation board designed to harness the awesome capabilities of the SSI2130 Voltage-Controlled Oscillator.


## SETTING UP

## Power Supplies

The EVB2130 needs very little additional support to get it going. With an onboard regulator and reference, the only power needed is a dual (bipolar) $\pm 12 \mathrm{~V}$ bench power supply. +12 V goes into the red (left) banana socket, $\mathrm{GND} / \mathrm{COM} / \mathrm{OV}$ goes to the black (middle) socket, and -12 V goes to the blue (right) socket.

## Signal Connections

All connections to the EVB2130 are brought out to the sides of the board. Ground terminals are positioned around the board as well as within headers for convenience. Almost all of the signal connections to the EVB2130 are suitable for oscilloscope probes or small crocodile clips. Header strips allow easy connection to other circuit boards or test leads.
Initial Jumper "Shunt" Setup (see photo above)
INT Fitted; connects the on-board PWM control R7 to the PWM input
SAW Not connected
TRI Fitted; PWM is generated by the triangle wafeform
SINE DC Both fitted; sine converter is DC-coupled for best low-frequency performance


## PWM

The EVB2130 supports both on-board PWM control as well as an external PWM Control Voltage. The PWM control can be set using pot R7 with the INT header fitted, or an external control voltage can be applied with the INT header removed.
The SSI2130 supports two modes of PWM operation based on whether the PWM block is driven by SAW or TRI waveform.


When driven by the SAW wave the PWM output falling edge corresponds to the falling edge of the SAW. The rising edge occurs at a point determined by the PWM reference (internal or external). If the modulation signal varies at audio rates the effect is to introduce a subtle frequency modulation of the VCO output.
When driven by the TRI wave both PWM edges change position with changes in the modulation signal. This is called "Phase Correct PWM" and retains the correct frequency of the VCO.

## SINE SHAPER

The SSI2130 includes a low-distortion and temperature-compensated sine wave shaping circuit. On the EVB2130 it is driven by the triangle wave output.
The sine shaper can be driven in two ways: AC-coupled and DC-coupled. The EVB2130 can be configured in both ways. To AC-couple, remove both of the headers in the SINE section. For DC-coupling, insert both headers: one removes the DC-blocking capacitor, the other adds a DC bias to correct for the bias in the TRI output.


## SAW SHAPE

The SSI2130 supports both rising and falling sawtooth waves when in non-TZFM mode.
With the switch in the upper position the SAW output produces a rising slope, and with the switch in the lower position the SAW output produces a falling slope. Note that in TZFM mode (see below) the SAW SHAPE switch is not used.


## TZFM MODULATION

The SSI2130 is easily set to operate as a Through-Zero Frequency Modulated Voltage-Controlled Oscillator.


Put the mode switch into the TZFM position. Without any modulation signal the result is unchanged. However, with a modulation signal things get interesting.
The FM pin allows introduction of a DC-coupled modulating signal into the VCO. This is added to the normal expo current so that it keeps the original center frequency. As the modulation signal increases, frequency of the VCO also increases. As the modulation signal falls so too does the VCO frequency.
Once the VCO frequency falls to DC (zero frequency) it continues through zero to produce negative frequencies, giving the name "Through-Zero FM."What this really means is that the oscillator reverses direction: if the triangle was previously going up, it now goes down, and so on.
The result is the classic "FM" sound: rich, complex waveforms that can be used to produce a wide range of timbres, from piano and organ, to brass and more experimental sci-fi sounds.
The PM pin operates in a slightly different way to the FM pin. Although it appears to vary VCO frequency, note this pin is AC-coupled which produces PHASE modulation (the CZ series of synthesizers from a certain Japanese calculator company used this to great effect). This is a subtle distinction but brings a different sonic palette to the SSI2130's capabilities. Try feeding in a 10 Hz square wave into the FM and PM pins to hear the difference.

## EXPO CONVERSION

The SSI2130 has a fully temperature-compensated exponential converter, necessary for musical oscillators to track in volts-per-octave.
The following diagram shows all the accessible components of the exponential converter. The FREQ pin is where the external (e.g., keyboard) control voltage is connected. EXP SCALE sets sensitivity of the VCO (typically +1V/octave). The HFT provides compensation at the upper end of the control voltage range. Finally, the BIAS trimmer sets the VCO's operating frequency for OV control voltage input. Once tuned all you need to do is to connect a $+1 \mathrm{~V} / 0$ octave control voltage to the FREQ pin.
For setting this all up see "Tuning Process" in the SSI2130 data sheet.

## MIXER

The SSI2130's internal 5-channel mixer brings together the three main waveforms (triangle, sawtooth and pulse/PWM) together with two additional auxiliary inputs (AUX1 and AUX2).


For example, one of the auxiliary inputs could be connected to the sine wave shaper output. The output of the mixer is on the MIX OUT pin. A 3.5 mm mono audio jack is also provided for easy connection to a mixer or Eurorack modular synthesizer.


